Solve the following proportion:

$$\frac{4}{9}$$
 $\times \frac{x}{50}$

$$\frac{9x}{9} = \frac{200}{9} \quad x = 22.23$$

Name two different ways to tell if the following ratios are proportional:

$$\frac{2}{30} + \frac{5}{15} = \frac{10}{30} = \frac{10}{30}$$

$$\frac{1}{3} = \frac{1}{3}$$

$$0.\overline{3} = 0.\overline{3}$$

Investigation 7.1 - on computer

Dilation Similarity Conjecture: If one polygon is a dilated image of another polygon, then the polygons are similar

- Two polygons are similar if and only if the corresponding angles are congruent and the corresponding sides are proportional

EXAMPLE

 $SMAL \sim BIGE$ Find x and \overline{y} .

$$\frac{18}{24} = \frac{21}{x}$$

1. HAPIE ~ NWYRS

$$AP = \frac{\$}{7}$$

$$EI = \frac{\$}{7}$$

 $EI = \frac{7}{15}$ $SN = \frac{15}{15}$

2. $QUAD \sim SIML$

MI = ____

m∠*D* = ____

m∠*U* = ____

m∠*A* = ____

In Exercises 3–6, decide whether or not the figures are similar. Explain why or why not.

3. ABCD and EFGH

4. $\triangle ABC$ and $\triangle ADE$

